SimIFEx MINOS+ Report

A.P. Schreckenberger 2014-03-24

Where MINOS/MINOS+ Stands

- We currently use Texas computing to generate single interactions
 - Output files are moved to FNAL for overlay processing (in which single interactions are joined to form spills that more resemble reality) and reconstruction
- Using Daikon_I0 version of our Monte Carlo
 - ► NEUGEN3 Fortran based framework
 - Virtual Monte Carlo GEANT3 for detector simulation
 - ▶ Efforts to move to a newer MC version
- Using FLUGG to simulate the neutrino beam flux

Future Action Items

- Texas continues to serve as source for generating single interactions
 - Might be push to move to OSG submission, given manpower and available resources
- Hops version of Monte Carlo
 - Would move from Fortran base to C++ GENIE
 - ▶ C++ integration would remove another relic of Fortran
 - Would like to see work effort resume, but understand that given conference season, time is limited
 - ▶ Aim to restart in Q3 2014
 - Would like to know an ETA from this point
 - Moving to Hops opens up additional resources to MINOS
 - ► CVMFS, FTS, OSG tools become available

Other Future Items

GEANT4 for detector simulation

- Implementation and testing with VMC framework would take additional manpower
- GEANT4 physics lists and beam simulation
 - Interest in seeing how physics lists developed for neutrino experiments perform
 - Studies are already going on under the guise of NuMI-X consortium, but we are interested in this at the experiment level
- MINOS has been using FLUKA for beam flux simulation
 - ▶ Test of GEANT4 lists could yield transition
 - The main benefit here being the software is supported by the lab, and as such, tech guidance is immediately available

